
3rd BUTE International 24-hour Programming Contest

Qualifying Round Problem Set

http://www.challenge24.org

April 12, 2003

Schönherz Kollégiumi
Számítástechnikai Kör

The main sponsor of the contest
is Fornax Co.

Platinum grade sponsors:

Gold grade sponsors:

Silver grade sponsors:

Bronze grade sponsors:

Professional sponsors: BUTE Center of Information Technology, IEEE, John von Neumann Computer
Society

General Notes

• There are six problems A, B, C, D, E, and F.

• To solve the problems, you can use any platform, operating system, programming language, devel-
opment tools, libraries, etc. but you must not use any external human resources.

• When the input file is a text file, then the lines are separated by a single line feed character (character
code 10), the last line of the file is also terminated by an LF character. The output of your programs
also has to follow this convention. Moreover, there cannot be trailing space characters at the end of
the lines.

• There are several test cases for each problem. If not written otherwise, then the input files for
problem X are called X-1.in, X-2.in, . . . , where X is one of A, B, C, D, E, and F. The output files
produced by your program should be called X-1.out, X-2.out, etc.

• In some of the problems, where there are only one correct solution for each test case, we have
provided the MD5 checksum of the correct solution. If there is a file X-1.out.md5 besides the input
file X-1.in, then this is the MD5 checksum of the correct output for X-1.in.

• In Problem B, the correct output could be very large. Therefore you do not have to submit the
output files B-1.out, B-2.out, . . . , but only the MD5 checksums of these files. The files containing
the checksum should be called B-1.out.md5, B-2.out.md5, etc.

• We have provided some sample input/output files for the problems. The first sample input file
for Problem X is called sample-X-1.in, a correct solution for this test case is given in the file
sample-X-1.out. In some cases, the MD5 checksum of the output is given in the file sample-X-1.out.md5.

• To submit your solution, you should login at http://www.challenge24.org/reg/login.php using
your team name and password. Then follow the Electronic contest link.

• You are required to submit exactly one .ZIP file called X.zip for each problem X. This .ZIP file
should contain the output files for each test case of the given problem. Please note: using .ZIP
compression is a must! Multiple uploads per problem is allowed, however, only the last submission
is judged.

• If your output is correct for a test case, then you will get the points shown in the table below. You
get the points even if your solution for the other test cases are incorrect. Note that we check only
your last submission for the problem. Therefore if you submit a correct solution, and later you
submit an incorrect solution for the test case, then you will get no points for this test case.

Problem A Problem B Problem C Problem D Problem E Problem F
A-1.in: 10 B-1.in: 10 C-1.in: 5 D-1.in: 10 E-1.in: 10 F-1.in: 10
A-2.in: 10 B-2.in: 10 C-2.in: 5 D-2.in: 10 E-2.in: 10 F-2.in: 10
A-3.in: 10 B-3.in: 25 C-3.in: 5 D-3.in: 10 E-3.in: 10 F-3.in: 10
A-4.in: 10 B-4.in: 25 C-4.in: 10 D-4.in: 10 E-4.in: 10 F-4.in: 10
A-5.in: 10 C-5.in: 15 D-5.in: 10 E-5.in: 10 F-5.in: 10
A-6.in: 10 C-6.in: 15 D-6.in: 10 E-6.in: 10 F-6.in: 10
A-7.in: 10 C-7.in: 15 D-7.in: 10 E-7.in: 10 F-7.in: 10
Total: 70 Total: 70 Total: 70 Total: 70 Total: 70 Total: 70

• The 40 teams scoring the highest points will gain the right to participate in the final at Budapest,
Hungary May 16-18, 2003. In case of a tie, the sum of the submission times decides the order.
Submission time of a problem is the time (in minutes) elapsed between the beginning of the contest
(10 am) and the last upload for this problem; or 0 if you received 0 point for the given problem. We
always use server time.

3

• If you find a problem statement ambiguous, questions should be sent directly to challenge24@challenge24.org.
You must not use contest2003@challenge24.org! Questions are answered privately.

• In the first hour of the contest, we also send replies immediately to contest2003@challenge24.org.
Later a digest of the answers is sent in every 60 minutes.

4

Problem A: Letters

Introduction

The archaeologists of The Bandulu Republic organized an expedition to excavate the ancient city of Bandu,
the forgotten capital of the Bandulu Kingdom. The expedition was successful and tons of invaluable
treasures were recovered. The most interesting find was a large collection of stone tablets with some
strange-looking text inscribed on them. The experts say that the letters are familiar, but they do not
understand the words, which must be in some unknown language, or might be a coded message. To find
the meaning of an unknown text, the first thing to do is to count how many times the different symbols
appear, this might give us some useful information on the language. However, there are many tablets,
and counting letters is a very boring thing to do, therefore the archaeologists ask you to write a program
that does this automatically.

Input

Each test case consists of 2 input files: the description of the letters in the text file, and the image of a
stone tablet. The file name of the image file is the same as the name of the text file, but it has a .png
extension instead of an .in extension.

The description of the letters is a text file, which defines exactly how each letter is drawn. The first
line contains 3 numbers, n, w, and h. The number n is the number of letters described in the file. Each
letter is a black and white bitmap w pixels wide and h pixels tall.

The input file contains h + 1 lines for each letter. The first line contains only a single character
corresponding to the letter. The next h lines correspond to the h rows of the bitmap, and contain w
characters each. These characters can be ’.’ to indicate a white pixel, or ’*’ to indicate a black pixel .

The image file is in PNG format, its size can be up to 1024×1024 pixels. The background of the image
is white, and the letters in the image are black. Each letter may appear in the normal position, or it may
be rotated: it could be rotated 90 degrees clockwise, it could be rotated 90 degrees counter-clockwise, or
it could be turned upside down (rotated 180 degrees).

• Every letter appears exactly as it is defined in the text file, there is no “noise” or “error” in the
image.

• The letters do not overlap or touch each other. More precisely, if we put each letter in the image
into its w × h bounding rectangle, then these rectangles do not overlap or touch each other.

• There is no ambiguity in recognizing the letters: a rotated letter cannot be the same as any other
letter.

Output

The output is a text file having exactly n lines. Each line begins with a letter, followed by a space and
the number of times this letter appears in the image (if the letter does not appear in the image, then this
number should be zero). The order of the lines must follow the order in which the letters are defined in
the input text file.

5

Sample Input

Definition of letters (sample-A-1.in):

3 8 8
A
........
...**...
..****..
.**..**.
.******.
.**..**.
.**..**.
.**..**.
B
........
.*****..
.**..**.
.**..**.
.*****..
.**..**.
.**..**.
.*****..
C
........
..****..
.**..**.
.**.....
.**.....
.**.....
.**..**.
..****..

Input image (sample-A-1.png):

Sample Output

Number of characters (sample-A-1.out):

A 6
B 3
C 11

6

Problem B: Expressions

Introduction

In this problem we consider arithmetic expressions that are composed of the following symbols:

• the four binary operators ’+’, ’-’, ’*’, and ’/’,

• the variables ’x’ and ’y’,

• the functions ’sin’ and ’cos’,

• opening and closing parenthesis ’(’ and ’)’.

Here are some examples for valid expressions:

x+x*y+sin(x) x+(x+x) (((x))) sin(x)+cos(y)
(cos((x))) ((x)*(x)) (x+y)*(x-y) sin(sin(sin(x)))

Notice that in this problem ’-’ is a binary operator, unary use is not allowed. Therefore ’-x’ and ’x*-y’
are not valid expressions. The expression cannot contain spaces. The ’sin’ and ’cos’ functions have to be
followed by an argument. The parentheses around the argument of ’sin’ and ’cos’ are obligatory, thus
’sinx’, ’sinx*y’, or ’x+sin’ are not valid expressions.

Your job is to write a program that, for a given length `, generates every valid expression of length
exactly `.

Input

The input file contains only one integer `, the length of the expressions to be generated.

Output

The output of your program is a text file containing every expression of length ` exactly once. Each line of
this text file should contain one expression, and the lines of the file should be sorted (in ascending ASCII
order).

Note: Since the size of the output file can be quite large, in this problem you do not have to submit the
output file, but only its MD5 checksum. For example, for test case B-1.in, submit the MD5 checksum of
the output B-1.out in a file called B-1.out.md5.

7

Sample Input

Input file sample-B-1.in:

3

Input file sample-B-2.in:

6

Sample Output

Output file sample-B-1.out:

(x)
(y)
x*x
x*y
x+x
x+y
x-x
x-y
x/x
x/y
y*x
y*y
y+x
y+y
y-x
y-y
y/x
y/y

Output file sample-B-2.out:

cos(x)
cos(y)
sin(x)
sin(y)

8

Problem C: DNA Sequences

Introduction

“We wish to suggest a structure for the salt of deoxyribose
nucleic acid (D.N.A.). This structure has novel

features which are of considerable biological interest.”
J. D. Watson & F. H. C. Crick, Nature, April 25th, 1953

April 25th this year is the 50th anniversary of the seminal article of Watson and Crick in Nature that
described the structure of DNA, the molecule that contains the genetic information of every living being
on Earth. Their discovery was a breakthrough in biology, and it made possible numerous advances in
understanding living organisms, including humans. Fifty years later, the Human Genome Project gave us
a map of our genes, possibly opening the way for better drugs and treatments.

The success of the Human Genome Project was in large part due to the widespread use of computers
and sophisticated software. Mapping the DNA requires the efficient manipulation of massive amounts of
data. Computational biology and bioinformatics are new areas of computer science that deal with this
kind of problem.

The genetic information in a DNA molecule is coded as a sequence of bases. There are four different
bases: adenine (A), cytozine (C), guanine (G), and thymine (T). Determining the sequence of bases in a
given piece of DNA is called sequencing the DNA. Your job is to write a program that helps us in this
task.

We have a long piece of DNA that we have to sequence. We have made several measurements, each
measurement describes the sequence of bases for some small segment of the DNA. Each such segment has
the same length `. The first segment contains the first ` bases of the sequence. The second segment starts
at the (`− 4)th base, it overlaps with the first segment on 5 bases. The third segment overlaps with the
second segment on 5 bases, and so on. For example, if we have this DNA sequence of 49 bases:

ATTCGTACCGGAGTCCCAGACCTCGGGTTAAACACATATAGATGCAGAT

and ` = 16, then we have the following 4 measurements:

ATTCGTACCGGAGTCC TCGGGTTAAACACATA
AGTCCCAGACCTCGGG ACATATAGATGCAGAT

Unfortunately, due to some software errors, the order of the segments became mixed up. So we have all
the segments, but we do not know which segment corresponds to which measurement. Given the segments
obtained by the measurements (in some random order), your program has to recover the original sequence.

Input

The input is a text file. The first line contains two integers n and `, where n is the number of segments
in this test case and ` is the length of the segments. The next n lines describe the n segments obtained
by the measurements (in random order). Each line contains a string of length `, each letter of the string
is one of ’A’, ’C’, ’G’, or ’T’.

Output

You have to output the original sequence in a file whose length equals the length of the original sequence.
(Notice that a simple calculation shows that the length of the original sequence is n(` − 5) + 5). The
output file should contain only the ’A’, ’C’, ’G’, or ’T’ characters. Do not terminate the file with a new
line character. If there are multiple possible solutions (the original sequence cannot be unambiguously
recovered), then you can output any correct solution.

9

Sample Input

sample-C-1.in:

7 12
CACAGTGAGGCT
AGGCTTCAAGCA
TTAGAACCATCC
GGAGGCCCACAG
CATCCTTAGGCT
AGGCTATGGAGG
AGGCTTATTAGA

Sample Output

There are two correct possibilities for
sample-C-1.out:

AGGCTATGGAGGCCCACAGTGAGGCTTATTAGAACCATCCTTAGGCTTCAAGCA

and

AGGCTTATTAGAACCATCCTTAGGCTATGGAGGCCCACAGTGAGGCTTCAAGCA

10

Problem D: Island

Introduction

Although Tikubulu Island is quite small, it was the scene of countless bloody wars throughout the centuries.
There has been peace for some years, but the island is divided into several small countries. Now is a good
time to draw a map of the island, since we hope that the borders of the countries will stay the same for
some time. When drawing the map, we should follow these rules:

• The color of the sea is blue (RGB: 0,0,255).

• The border between two countries, or between a country and the sea is marked by a black line
(RGB: 0,0,0).

• The color of a country with area less than 500 km2 is orange (RGB: 255,128,0).

• The color of a country with area between 500 km2 and 1000 is red (RGB: 255,0,0).

• The color of a country with area greater than 20000 km2 is yellow (RGB: 255,255,0).

If the area of the country is between 1000 km2 and 20000 km2, then its color is determined by the number
of vertices on its boundary:

• A country the boundary of which has 3 vertices (i.e., it is a triangle) should be colored green
(RGB: 0,255,0).

• A country the boundary of which has 4 vertices should be colored cyan (RGB: 0,255,255).

• A country the boundary of which has 5 vertices should be colored brown (RGB: 128,0,0).

• A country the boundary of which has 6 vertices should be colored gray (RGB: 192,192,192).

• A country the boundary of which has 7 or more vertices should be colored magenta (RGB: 255,0,255).

Input

The input is a text file containing the description of the map of an island. The first line contains an integer
n, which is the number of vertices in the map. The next n lines contain two integers each, the x- and
y-coordinates of the vertices (in km). These n lines are followed by a line containing an integer m, the
number of boundary line segments in the map. Each boundary line segment connects two vertices. The
boundary line segments do not cross each other, and each segment separates two countries, or a country
and the sea. The last m lines of the input file describe the m boundary line segments of the map. Each
line contains two integers, the end vertices of the segment (the vertices are numbered 0, 1, . . . , n− 1, the
coordinates of vertex 0 appears first in the input file).

It can be assumed that there is no country which is completely surrounded by some other country.
During the history of Tikubulu Island, if some country A completely surrounded some other country B,
then sooner or later country A eliminated country B.

Output

You have to output the map of the island in a 1024× 1024 PNG file. The color depth, palette, etc. of the
file can be arbitrary, as long as it correctly represents the colors of the map. The recommended format is
true color. The file name of the output for test case D-1.in should be D-1.png. Each pixel is 1 km, the
coordinates of the pixel in the upper left corner are (0, 0). The x-axis is horizontal, the y-axis is vertical.

There is more than one way of drawing a line between two points, therefore there is more than one
correct solution. When your solution is judged, such errors will be tolerated.

11

Sample Input

sample-D-1.in:

6
100 200
200 50
200 340
400 70
370 400
480 120
8
0 1
1 2
0 2
1 3
2 4
3 4
3 5
4 5

Sample Output

sample-D-1.png:

12

Problem E: Crypto

Introduction

The Bandulu Secret Service has just intercepted a secret message of the Tuluvu army. It is extremely
important to decode the message, it may determine the outcome of the Bandulu–Tuluvu war. Fortunately,
we know how the Tuluvu army encrypts its messages, your job is to write a program that decrypts the
secret message.

The encryption process consists of the following steps.

Step 1. We assume that the length ` of the original text is a perfect square, that is, ` = n× n for some
integer n. Write the message into an n times n matrix: fill the first row, starting from the left going to
the right, then fill the second row, and so on. Read the characters “diagonally”, in the order shown on
the figure: first read the upper left character, then read the characters under the diagonal arrows shown
in the figure.

11

7

4

2

1 3

5

8

12

16 20

17

13

9

6 10 15

1914

18 22

2421

23 25

Step 2. In this step we reorder the character sequence obtained in Step 1. We repeat the following three
steps ` times:

(a) Write down the first character of the sequence, and delete this character from the sequence.

(b) If the length of the remaining sequence is longer than 12 characters, then remove the first 12 char-
acters of the sequence, and append it to the end of the sequence.

(c) If the length of the sequence is longer than 1, then swap the first two characters.

Step 3. The character sequence created in Step 2 can be interpreted as a sequence of integers a1, a2,
. . . , a`, where each ai is between 0 and 255. In this step we calculate a sequence b1, b2, . . . , b` using the
following formula:

b1 = a1

bi = (ai + bi−1) mod 256 for i > 1

’mod 256’ means taking the remainder of the number modulo 256.

Step 4. We calculate a sequence c1, c2, . . . , c`:

ci =

{
(bi + i) mod 256 if i is a prime number
bi otherwise.

Recall that a number p > 1 is a prime number if and only if its only divisors are p and 1. Note that 1 is
not a prime number.

13

Step 5. Each number ci is transformed into two characters. The first character is determined by the
upper 4 bits (MSB) of the number, the second character is determined by the lower 4 bits (LSB). The
upper 4 bits represent a number between 0 and 15. If this number is 0, then first character is ’A’; if this
number is 1, then the character is ’B’; . . . ; if this number is 15, then the character is ’P’. The second
character is determined in a similar fashion, based on the value represented by the lower 4 bits of ci.

Example

For example, consider the message ’CHALLENGE24-2003’. In Step 1 we get the matrix

C H A L
L E N G
E 2 4 -
2 0 0 3

therefore we obtain the sequence ’CLHEEA22NL04G0-3’. We begin Step 2 with this sequence. Repeating
steps (a)-(c), we get the following sequences:

CLHEEA22NL04G0-3
-03LHEEA22NL04G
G403LHEEA22NL0
4003LHEEA22NL
003LHEEA22NL
30LHEEA22NL
L0HEEA22NL
H0EEA22NL
E0EA22NL
E0A22NL
A022NL
202NL
20NL
N0L
L0
0

For example, starting with ’CLHEEA22NL04G0-3’, the first character ’C’ is deleted, then the first 12 charac-
ters ’LHEEA22NL04G’ are removed from the beginning, and appended to the end, gives ’0-3LHEEA22NL04G’.
Finally, in step (c), the first two characters are swapped, which is how we get the sequence ’-03LHEEA22NL04G’.
Since in step (a) we write down the first character of the current sequence, getting ’C-G403LHEEA22NL0’.
This is equivalent to a sequence of numbers a1, a2, . . . , a16:

67, 45, 71, 52, 48, 51, 76, 72, 69, 69, 65, 50, 50, 78, 76, 48.

Therefore the sequence b1, b2, . . . , b16 constructed in Step 3 is:

67, 112, 183, 235, 27, 78, 154, 226, 39, 108, 173, 223, 17, 95, 171, 219.

In Step 4 we modify the value only of the 2th, 3rd, 5th, 7th, 11th, 13th numbers (these are the prime
numbers between 1 and 16). Therefore the sequence c1, c2, . . . , c16 is

67, 114, 186, 235, 32, 78, 161, 226, 39, 108, 184, 223, 30, 95, 171, 219,

or in hexadecimal form:

0x43, 0x72, 0xba, 0xeb, 0x20, 0x4e, 0xa1, 0xe2, 0x27, 0x6c, 0xb8, 0xdf, 0x1e, 0x5f, 0xab, 0xdb.

The upper four bits of 0x43 represents 4, the lower four bits of 0x43 represents 3, therefore Step 5
transforms 0x43 to ’ED’. Similarly transforming the other numbers gives the sequence

EDHCLKOLCAEOKBOCCHGMLINPBOFPKLNL

which will be the encoded form of the original message ’CHALLENGE24-2003’.

14

Sample Input

sample-E-1.in:

EDHCLKOLCAEOKBOCCHGMLINPBOFPKLNL

Sample Output

sample-E-1.out:

CHALLENGE24-2003

15

Problem F: Ecology

Introduction

The Great Plain of Yukuruku is not a very interesting place. There is grass, there are rabbits, and there
are foxes, but there is nothing else. However (for some reason not detailed here), it is very important to
keep track of the rabbits and the foxes. Unfortunately, the number of rabbits and foxes is always changing,
since the foxes eat the rabbits, and the rabbits breed like, well, like rabbits. You have to write a program
that simulates the ecosystem of the plains.

The Great Plain of Yukuruku is modeled by a n×m matrix, where each cell is in one of three states:
either there is grass, or there is a rabbit, or there is a fox. In the input you are given the initial state of
each cell. The cells change according to the following three rules:

• If a cell contains grass, and it has a neighbor containing a rabbit, then the rabbit eats the grass,
and this cell will also contain a rabbit.

• If a cell contains a rabbit, and it has a neighbor containing a fox, then the fox eats the rabbit, and
this cell will also contain a fox.

• If a cell contains a fox, and it does not have a neighbor containing a rabbit, then the fox dies of
hunger, and the cell will contain grass.

The neighbors of a cell also include those cells that share only a corner with the cell. Therefore a cell can
have at most 8 neighbors (if the cell is on the boundary of the matrix, then it has less than 8 neighbors).

Given the initial state of the matrix, the simulation goes as follows. First we assign the value f(i, j)
to the cell in the ith row and jth column, where (1 ≤ i ≤ n, 1 ≤ j ≤ m)

f(i, j) = 23i + 87j + 19i2 + 61j2 + 13i3 + 31j3 mod 131,

which is a number between 0 and 130 (mod131 means the remainder of the number modulo 131). In the
first step we apply the three rules to those cells whose f(i, j) value is 0, in the second step we apply the
rules to those cells with value 1, . . . , in the 131th step we apply the rule to the cells with value 130. Then
we start again: in the 132th step we apply the rule to the cells with value 0, and so on.

In each step, the rules are applied to the selected cells in parallel. This means that for each cell, first
we have to check its neighbors and decide what will be the state of the cell in the next step. When we
know the next state of each cell, then the cells change their value at once. Therefore it is possible, for
example, that a cell with grass and a cell with a fox are neighbors, and in the same step the grass is eaten
by a rabbit, and the fox dies of hunger.

Input

The input is a text file describing the initial state of the cells. The first line contains three integers
(separated by one space): the number of rows n, the number of columns m, and the length of the
simulation `. The next n lines contain m character each, describing the n rows of the initial matrix. The
characters in the row can be only ’.’ (grass), ’!’ (rabbit), or ’*’ (fox).

Output

For each test case, you have to output a text file, and 6 images in PNG format. The first ` lines of the
text file show how the number of grass, rabbits, and foxes change during the simulation. The ith line
(1 ≤ i ≤ n) contains three numbers separated by one space: the number of cells with grass, with rabbit,
and with fox after the ith step of the simulation. The last 6 lines of the text file gives some statistics. For
each type of cells, it shows at which step the matrix contained the maximum and minimum number of
cells from this type. These lines must be in the following format:

16

Minimum number of grass: x1 after step t1.
Maximum number of grass: x2 after step t2.
Minimum number of rabbits: x3 after step t3.
Maximum number of rabbits: x4 after step t4.
Minimum number of foxes: x5 after step t5.
Maximum number of foxes: x6 after step t6.

If the maximum/minimum of a type is attained multiple times, then you should output the first step
when this type reaches its maximum/minimum. Moreover, it is possible that, for example, the minimum
number of grass is reached before the first step of the simulation (the number of grass cells never go below
the number of grass cells in the initial matrix). In this case, t1 is zero.

The six images that you have to output describe the state of the matrix after the t1th, t2th, . . . , t6th
step. For test case F-1.in, the output PNG files should be called F-1-1.png, F-1-2.png, . . . , F-1-6.png.
The width of each image is m pixels, the height is n pixels (it has the same size as the matrix). The pixel
in the upper left corner corresponds to first cell of the first row. The color of the pixel is determined by
the state of the cell:

• Grass: green pixel (RGB: 0,255,0)

• Rabbit: gray pixel (RGB: 192,192,192)

• Fox: red pixel (RGB: 255,0,0)

The color depth, palette, etc. of the file can be arbitrary, as long as it correctly represents the matrix.
The recommended format is true color.

17

Sample Input

Input file (sample-F-1.in):

16 16 7
!..**!.*.!*!.!!!
!!!!**!*!*.!
!.**!*.*..!*.!.*
!!...**!!*.**.
...*!!!!**.!*!.*
!.!.*!!!!.*!.!.!
!!!***.!!*!!!!
*!**!!!!*!!!.*..
!*!.!.*!!!.*!!.*
!!.*.!!!*.!!.*
!*!.*!.!*!.!.!**
.**.*.**.!..**.*
!..**!.*!!!*.!..
!...*!***.*.*!
.**!.!**..**!...
.*.*..*.****!*!.

Sample Output

Output text file (sample-F-1.out):

75 91 90
74 92 90
74 92 90
74 91 91
75 91 90
74 90 92
73 91 92
Minimum number of grass: 73 after step 7.
Maximum number of grass: 75 after step 1.
Minimum number of rabbits: 90 after step 6.
Maximum number of rabbits: 92 after step 2.
Minimum number of foxes: 90 after step 1.
Maximum number of foxes: 92 after step 6.

sample-F-1-1.png:
Minimum number
of grass:
73 after step 7.

sample-F-1-2.png:
Maximum number
of grass:
75 after step 1.

sample-F-1-3.png:
Minimum number
of rabbits:
90 after step 6.

sample-F-1-4.png:
Maximum number
of rabbits:
92 after step 2.

sample-F-1-5.png:
Minimum number
of foxes:
90 after step 1.

sample-F-1-6.png:
Maximum number
of foxes:
92 after step 6.

18

